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Weakly nonlinear morphological instability of a cylindrical crystal growing
from a pure undercooled melt
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We develop a weakly nonlinear morphological stability analysis for an infinitely long right circular cylinder
growing from its pure undercooled melt. For a cylinder perturbed by a specific planform consisting of sinu-
soids, we perform an expansion in the planform amplitdd® calculate the nonlinear critical radigabove
which the chosen planform will be unstable for finkg, to the lowest order irA, by setting the normal
velocity corresponding to the fundamental perturbing mode to zero. We study the nonlinear critical radius as a
function of the amplitude to identify the various bifurcations, which for the chosen sinusoidal planforms are
subcritical or supercritica(requiring an expansion to third order i), since the shapes for positive and
negative amplitudes are related by rotation and translation. We find that the bifurcations are mostly subcritical.
For the special case of axially symmetric perturbations, we encounter a generalization of the Rayleigh vari-
cosity instability.[S1063-651X96)01706-4

PACS numbegps): 64.70.Dv, 81.10.Aj, 02.30.Mv

I. INTRODUCTION U =Ug=1-K, (2.9

We consider the free growth of a segment of an infinitelywhereU= —U _ + BUg, g is the ratio of thermal conductiv-
long right circular cylinder from its pure undercooled melt, ity in the solid to that in the liquid phase and
subject to the quasistationary approximation. The process of
crystallization from the melt is a first order phase transfor- U—0 asp—o». (2.5
mation involving the release of latent heat which has to be
conducted away both into the solid and the liquid as theThe choice of dimensionless variables is similar to that of
process continues. For simplicity we assume isotropy of alprevious work[4,5] where lengths are scaled by the nucle-
crystalline properties including surface tension. The basiation radius, R*=(Ty,)/[Lo(Ty—T.)], and time by
physics and the mathematical description of the problem is=[(R*)?]/(«, S) wherey is the surface tensiof,, is the
very similar to that for a spherical crystal, discussedlih  melting temperaturel, is the far field temperaturé, is the
The details of the calculation will, however, be quite differ- latent heat, andy, is the thermal diffusivity in the liquid
ent since the cylinder, unlike the sphere, is not a shape gihase. Note thaR* pertains to a cylindrical nucleus and is
minimum area for a fixed volume. Indeed infinitesimal per-therefore a factor of two smaller than that for a sphere. The
turbations can lead to principle curvatures of opposite signslimensionless curvatuné =R* (1/R,+ 1/R,) whereR; and
resulting in an instability that is closely related to the Ray-R, are the dimensional principal radii of curvature. The di-

leigh varicosity instability. mensionless undercoolinG=p, C, (Ty,—T.)/Ly and we
also use the dimensionless temperature fields
Il. THE UNDERLYING PHYSICS AND THE MODEL Us = (TsL—Tx)/(Ty—T.), wherep_ andC,_ are the den-

sity and specific heat of the liquid phase, respectively, and

We consider an infinite right circular cylinder growing by T are the respective temperature fields in the solid and

means of diffusive heat transfeiconvection proscribed liquid.
from its pure undercooled melt. In the quasistationary ap-
proximation[2,3], the nondimensional governing equation

. - . . . I1l. PERTURBATION EXPANSION
and boundary conditions for thermal diffusion in the solid v © S0

phase and the liquid phase may be written in the form We follow a procedure similar to that ¢fl] except in
cylindrical coordinates(p,¢,z); we reproduce here only a
V2U, =0, (2.1 brief outline to introduce our notation. At a particular instant
of time, we study an interface of the form
V2Ug=0, (2.2 L
p=9(z,¢)=p+A cogkz)cogve), Q.1
in the bulk solid and liquid, respectively. At the solid-liquid
interface, with v being an integer, and to third order
Vy=VU-n, (2.3 p=po+epit+eprteips, (3.2
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A=eA,+ €2A,+ €3A,. (3.3 U U
. 2 8 _VNn+ (9—pn+zn WZO:IUnv (319)

If we define

_ . where thel’s on the right hand sides denote inhomogeneous
Zi(z.d)=pi+ Aicodvg)cogkz) for i=1.23, (3.9 terms that are zero far=1 but otherwise complicated func-
then tions of the solutions at a lower order. The relevant inhomo-
geneous terms are given in Appendix A. As discussdd jn
0(2,0) = po+ €Z1(2, )+ €2Z,(b,2) + €3Z3($,2). we can setA;=1 andA,=Az;=0 in Eq. (3.3, without any
(3.5 loss of generality. This amounts to renormalization and iden-
tification of e=A.
Similarly we expand the temperature fiel@shich depend

onp, ¢,2) IV. PERTURBATION ALONG THE z AND ¢ DIRECTIONS
U =Uo+eU+ €U+ U3, (3.6 We consider a perturbation of the form
Us=Ugy+eUg +€?Ugy+ eUgs, (3.7 Zi(¢p,z)=p;+ € cogkz)cod v ). 4.2

the curvature, .
A. Zero order solution
K=Ko+eK;+e?Ko+ 'Ky (3.8 We solve Eqs(3.10 and(3.11) subject to the boundary

conditions, Eqs(3.12—(3.14), to get
and the normal growth speed gs(3.12—(3.14, to g

_ 2 3 _po—1
VN_VN0+ GVN1+E VN2+E VN3' (39) USO_ p ’ (42)
0
An explicit expression for th&; in the curvature expansion
is given in Appendix A. The differential equations and the ULo(p)= 1-po In(p/p..) 4.3
interfacial boundary condition at each orderedhen appear Lotp poln(p/pg) Pip=), '
as follows.
Order . The differential equations are po—1
VNO:W. (4.4)
19 aULO Po P!Po
e Ll Bl (310 - _ .
p dp ap In cylindrical coordinates we need a finite cuteff for the
solution to remain finite. Following Coriell and Parki#]
10 dUg o 31y e write p..=po/(y\), where Iny?*=0.5572(Euler’s constant
p dp P ap | ' and for supercooling<1, \ is a solution of the equation
and the interface boundary conditions are A2In(y?\?)+S=0.
1 With this choice ofp,,, the growth rate given by Ed4.4) is
Uo=1- E’ 312  the same, to lowest order B, as the growth rate calculated
by using the fully time-dependent diffusion equation. For
1 later use, we introduce the notation
Ugp=1——, (3.13
Po A=IN(pa1po)=SI(27\?).
dUq
NO:W. (3.19 B. First order solution
Order €', n=1,2,3. The differential equations are The trial solutions to Eq¢3.15 and(3.16), subject to the
boundary conditions, Eq$3.17—(3.19), can be written in
V2U,_,=0, (3.15 the form
V2Ug,=0, (3.16 ULi(p.z,8)=a{7In(p/p.) + oYK, (kp) = C,1 ,(kp)]
X .
and the interface boundary conditions are cogkz)cosv4), “.9
dUo Zn Zngs Usi(p,z,¢) =)+ a1 (kp)cogkz)cog ve),
UntZ, d — 2= 72 Znzz=lins (3.17 (4.6
P Po Po
Vai(z,6) = Vil + Viicogkz)cog vg),  (4.7)

s Zy Zngs

nzz=lsm 31
b2 )2 s (3.18 Z,(z,¢)=py+cogkz)cog ve), (4.9
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where K, and |, are the modified Bessel functions. The 200
quantities,C,, a(9, a¥, a9, «¥, Vv, V{, and p;,
obtained by substituting the trial solutions into E3.17)—

600

(3.19, are given in Appendix B. We reproduce the expres- 500 -
sion forV {{ for later reference 150 i
1 ) 400 [
(1) _ _ 7 _ g i
VN1 P {(po— D[ 7,(x)—1] E i
S 100 300
— (VX2 Z,(X)+ B ,(X)]}, (4.9 E
Q
where = 200

—K,(X)+C,I(x) %

e

100

‘ [(x) 0 0
T(X) =X 3 )’ 0.00 0.05 0.10  0.00 0.03 0.05
14
k k
K, (xe ")

v:mv FIG. 1. The critical radius as a function of taelirection wave

numberk for variousv. The thermal conductivity rati@ is 0.0 for
x=Kpo. the left plot and 1.5 for the right. The supersaturation is such that

.7,=4.0. For each of the plots;=1,3,4,5 from bottom to top. As
At the onset of instability, the normal velocity corre- We approach a given critical curve from below, the system is lin-

sponding to the perturbing mode must vanish to all ordersearly stable for any radius less than that given by the lower branch
For the first order, this amounts to setting of the curve, goes unstable above it, but restabilizes as we cross the

upper branch of the curve.

V=0
F44(0)=1,
in Eq. (4.9. For 7,(x)#1 this gives the critical radius for
instability in terms ofk, », and 3. It is easier to first express p2+ps
po in terms ofx, v, and B as 71(0)= s
el 0
2+ 2_ & + _‘/ﬁ .
po(X,v,B) =1+ 7, (vt x 1?[’7”(X) BA(X)] If 7:—1, the denominator of Eq4.10 tends to zero and
J(x)—1 Eq. (4.9) becomes
(4.10
- . , 1 2p5(po—1)

and later to dividex by p, to obtain the corresponding value Vil =— s (4.11
of k. The critical radius as a function &f for various v is P07\ P=PO

shown in Fig. 1. 1 ] )

To see how a certain perturbing mode grows, we imagind©" P->po, We see thatvVy{—0, so this mode is nearly
a linek=const in either of the plots in Fig. 1. If the constant Neutrally stable. This arises because perturbation bygcos
is zero, the vertical line cuts each curve at a single point’@Presents a translation to first ordereirhowever, the finite
implying that the system starts out stable and then goes ursutoff p,, used to avou_j the sm_gular_lty at m_flnlty to solutions
stable with respect to a given mode @increases past the Of the Laplace equation, spoils this precise symmetry. The
corresponding critical value. For any other value of the con£orresponding case for the sphere was treatéd]im which
stant, up to some maximum corresponding to the knee of thease no finite cutoff was necessary.
curve, the vertical line can intersect each curve at two points, o o
which means that the system is linearly stableddess than Perturbation in the z direction only
that given by the lower branch of the curve, goes unstable The results for az perturbation alondaxial symmetry
above it but stabilizes again fgr greater than the upper can be obtained by setting=0 in the general expressions.
branch of the curve. Thus the region enclosed by each curvEquation(4.10 yields
and thep, axis constitutes an unstable zone, while the rest of

the plane is a stable zone for the corresponding perturbing 3 , (X2=1)[ Zo(X)+ BIo(X)]
mode. We postpone the discussion of the cas@ (which po(X.)=1+.7, To(x)—1
corresponds to a perturbation in thairection only to the ‘ (4.12

next subsection because it has some unique features.

Another case that needs special mention is perturbatioA plot of pg as a function ok (the z-direction wave numbér
with k=0 and v=1. This corresponds to a perturbation by is shown in Fig. 2. The broken line represents the hyperbola
cos¢ along the¢ direction and no perturbation along the kpg=1. The normal velocity as a function of the radpgor
axis of the cylinder. In that limit two different values ok is shown in Fig. 3. To understand
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FIG. 2. Critical radius as a function of the wave numkefor
the perturbation in the direction only(v=0). The unstable region
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general case wher#0. Similar conclusions were discussed
by Coriell and Parkef6] in terms of the variableg,, X, in
which case the Rayleigh varicosity instability would corre-
spond to a vertical ling=1. McFadden, Coriell, and Murray
[7] considered the related case of a cylinder that is not grow-
ing, made possible by imposing a fixed temperature at an
inner cutoff radius as well as an outer cutoff radius. They
found that a positive temperature gradient in the liquid tends
to oppose or even suppress the Rayleigh instability, whereas
our negative temperature gradient in the liquid, needed for
the unperturbed cylinder to grow, enhances the Rayleigh in-
stability.

C. Second order solution

has been hatched. The long wavelength instability due to the Ray- The inhomogeneous terms in Eq8.17—(3.19 can be

leigh condition, represented by the regikbpy,<<1 (the broken line
represent&po=1) is a characteristic of this class of perturbations.

how a perturbation grows, we imagine a vertical line0.02
in Fig. 2 in conjunction with the first plot in Fig. 3. For small

expressed formally as
=1+ p,1®cogkz)coqd vep) + 1 cog 2kz)cod 2v )
+1®)cog2kz)+ 1B coq2v¢),

po, the normal velocity is positive, so the system is unstable. o ] )
As p, increases past the lower branch of the curve, the norwhere all the coefficients are known and appear in Appendix
mal velocity changes sign and the system becomes stablB: This suggests the following form for the second order trial

However, further increase ¢f, beyond the upper branch of
the curve renders the system unstable again.k=@.2, on

solutions:

the other hand, we see that the system is unstable at first, but L2(p.Z, ) = a{3In(p/p..) + a{JK ,(kp)cog kz)cog v )

then becomes stable ag crosses the critical value. There-
fore the curves in Fig. 2 divide the plane into a stafee-
treme lef}, an unstablémiddle), and a stabléright) region,

respectively. From considerations of surface free energy

alone, the regiorkp,<<1 bounded by the dotted line, would

+@J[Ky,(2kp) — Cy, 1 2,(2kp) Jcog 2k2)
Xcoq2ve)+ af_sz)

X[Ko(2kp) — Col o( 2kp) Jcos 2kz) + e[y

have been unstable while the region to the right would have

been stable. This is the well known Rayleigh varicosity in-
stability, and is a result of the fact that sinusoidal perturba-

tions of wavelengths greater thamr@, lower the surface to

X

cog2va), (4.13

"2

Poo

volume ratio of a cylinder. Thus the class of perturbations 72 M) =a9+ oYl (ko)cog kz)cod v
with »=0 has a long wavelength instability not seen in the 2(p2.d)=ag +agl,(kp)cogkz)cosve)
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0.000 0.00

S

> =
k=0.02 k=0.2

-0.001 001

-0.002 ——"~——— 0.02 ————

0 10 20 30 0 10 20 30

Po Po

FIG. 3. The normal velocity component proportional to the per-

turbing mode at first order. The left plot is fkr=0.02 and the right
plot is for k=0.2.

+a@)l,,(2kp)cog 2kz)cog 2v )
+ a1 o(2kp)cog 2k2) + af p?cog 2v ),
(4.14
Via(z,¢)=Vi9+ ViYcog kz)cog v )
+VJcog 2kz)cod 2v ) + Vi cog 2k 2)

+Vihcog2v¢), (4.15
Z,=p2, (4.16
where
Ky, (2kp..)

2 15,(2Kp.0)

Ko(2kp..)

Co= 7 (2kp,)

The quantitiese| ,,a',, VL, for i=0,1,2,3,4, found by sub-
stituting the trial solutions into the interface boundary con-
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ditions, Eqgs.(3.17—(3.19, are given in Appendix B. The

marginal stability condition at second order requiv&s) to
vanish, providing us with
x Ki(X) X 17(x)
(B @ 2 v B m v g (a1
putuz iz oo 6o T P e 100 0 47

Since the terms within the square brackets in @ql7) can
be shown to be nonzero, we must have

p1=0, (4.18

forcing

(1) _

1) _

This leavesp, as the only free parameter, which will be
determined at the next order.

D. Third order solution

The third order inhomogeneous terms in E¢3.17)—
(3.19 can be expressed as

I s=18cogkz)cogvep)+--- ,
lss=18cogkz)cog vep) + - ,
lus=1cogkz)cogvep)+ -,
where we show only the terms necessary to determine
Therefore the trial solutions to Eq§3.15 and (3.16 will

look like

ULs(p.z,¢)=a5[K,(kp)—C,I (kp)]cogd kz)cos v¢)

+oee, (4.19
Uss(p.z,¢)= g1, (kp)cogkz)cog vep) + -+

(4.20

Vas(z,¢)=ViHcogkz)cogvp)+-+-,  (4.21)

Z3=p3. (4.22

These terms will suffice in finding an expression fey,
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FIG. 4. p, as a function of the-direction wave numbek for
various v values. The thermal conductivity rati@ is 0.0 in the
lower plots and 1.5 in the upper plots. The supersaturation is such
that. 7,=4.0.v=1,2,3 from left to right. For all plots the system is
linearly stable beyond the maximum valuelofs given by Fig. 1
for each of the curves. Positiye implies supercritical bifurcation
while negative values imply subcritical bifurcation.

plot of p, as a function ok for various values o¥ and 8 is
shown in Fig. 4. If we go back to E¢3.2) we have, since

p1=0,
(4.29

The plot of p as a function ofA will be a parabola and the
bifurcation will be subcritical ifp, is negative and supercriti-
cal otherwise. Thus, in contrast to the case of the spligre
the bifurcations are never transcritical for these planforms on
a cylinder. This happens because, for the chosen planform,
the positive and the negative amplitude perturbations are re-
lated by rotation(for the ¢ axis) and translatior(for the z

axig and do not constitute any distinct physical states. Con-
sequently the criticap is independent of the sign of the
amplitudeA.

p(X, V!B) =p0(X1 V!ﬂ) +A2p2(X, V!ﬂ)'

V. CONCLUSIONS

which had remained undetermined at the end of the second

order. We substitute the trial solutions in the boundary con-

dition Egs. (3.17—(3.19 to find the quantitiesx(%), oy,

An expansion in the perturbation amplitude is per-
formed and the critical radius to the lowest order in A is

and V{&, which appear in Appendix B. In particular, the found by setting the normal velocity corresponding to the
normal velocity coefficient proportional to the fundamentalfundamental perturbing mode to zero. Depending on the

perturbing mode is

x KI(x)—C,l.(x) ® , X 1(X)

S oo 1,(x)

—1(B)
u3-

(4.23

V=18 =
po K, (X)—C,1,(x)

At the onset of instability we must have
1) _
V=0

in Eq. (4.23, giving us an expression fgr, as a function of

symmetry of the perturbing mode we found the following
results.

(1) »=0 and arbitrank: The critical radius for this axi-
ally symmetric perturbation is given by E@t.12. Perturba-
tions of this form are subject to a long wavelength instability
related to the Rayleigh varicosity instability, which occurs
because sinusoidal perturbations with a wavelength greater
than the circumference of a cylinder can lower its surface to
the volume ratio.

(2) v=1 andk=0: This case corresponds to a perturba-
tion by cog¢) along the ¢ direction and no perturbation

X, B, v. The explicit expression appears in Appendix B and aalong the axis of the cylinder. To the first order in the per-
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turbation amplitude, this amounts to a translation of the cylincreases, which makes an inconvenient parameter for a
inder without any shape change. If such a cylinder were in amonlinear analysis. As mentioned in our previous paper in
infinite medium, this perturbation would be neutrally stable.connection with the sphere, these weakly nonlinear results
For the case of a finite cutoff radiupsee Eqg.(4.11)] the  constitute a nontrivial test for the development of numerical
normal growth speed of a perturbation tends to zero fomlgorithms for three dimensional problems. It would also be
P> Po- interesting to explore the effect of anisotropies in surface
(3) v#0 and arbitrank: The critical radius for a pertur- free energy, especially those that would couple with the
bation of finite amplitudeA is found by carrying the pertur- perturbations in a manner that might shed light on the crys-
bation expansion i\ to the third order and is given by Eq. tallographically directed sidebranches of dendrites.
(4.24. The bifurcation is supercritical ip,(x,»,8)>0, and
subcritical if p,(x,v,8)<0. In this case, the shapes generated
by the positive and negative amplitude are related by rotation
(in the ¢ direction) and translatior(in the z direction. The This work was supported by the Division of Materials
governing equations are therefore independent of the sign dkesearch of the NSF under Grant Nos. DMR89-12752 and
A. DMR 92-11276. The authors would also like to thank S. R.
In three dimensions, the nature of the bifurcations depengoriell and G. B. McFadden for valuable discussions.
on the symmetry of the planform under consideration. For
the perturbed sphergl], we found that such bifurcations
could be transcritical, subcritical, or supercritical depending
on the particular spherical harmonic under consideration. The expression for the curvature expansion terms in Eq.
Moreover, capillarity was always a stabilizing force. This (3.8 are as follows:
behavior for a sphere arose because an unperturbed sphere
has two positive and equal principal radii of curvature. Any 1
perturbations of such a body at a fixed volume tend to in-

ACKNOWLEDGMENTS

APPENDIX A

crease its surface area, and all directions along the surface of Po
the unperturbed sphere are equivalent. For the unperturbed Zy Zigs
circular cylinder, on the other hand, one principal radius of 1= 5~ —5—Z13z,
curvature is positive and the other is infinite. Thus small Po  Po
perturbations along the direction can lead to regions of
negative curvature for sufficiently long wavelengths, the ori- ~ Zy  Zy44 ZZ 221214y Ziy 23,
gin of the Rayleigh instability. Moreover, directions along 2= Eg_ _pg_ 2227 3 p03 Zg_ 2p0’
the surface of the perturbed cylinder are not equivalent and
perturbations of the forn®\ cogv¢) and A coskz) display
symmetries of the formA——A when, respectively, K,=— Z_g’— 23‘5‘/’ . 221322 4 221232“!’“’ 4 222231‘/"/’
v—v+27 and z—z+2w/k. Therefore there are no tran- Po  Po Po Po Po
scritical bifurcations for the cylinder. 3 2 2

The origin of another feature of our analysis of the cylin- + ZL?‘”_ 2122 Z_i_ 3 lei‘f"ﬁ + lezlz
der, namely, the upper branches in Fig. 1 that correspond to Po Po Po Po 2py
restabilization, is worth mentioning. These branches arise be- 7 72 7 72 3772 4
cause we chose to discuss the problem at fixadd fixedk. 190212 L1y it z2
By fixing v, one fixes the number of nodes in tialirection, ZpS 2p(2) 2 pé 2 Tlezmz

so the wavelengths associated wittperturbations arey/v, 2

i.e., they scale witlpy. But the wavelengths associated with 42 2142172142 n § 2142149

thez perturbations are2k, independent of,. Therefore, as Py 2 py

po increases and the gradient effect that gives rise to insta-

bility is weakened, the capillary stabilization duezipertur-  In the above expressions and subsequent text, the subscripts
bations with afixed wavelength becomes stabilizing. This ¢ andz denote the respective partial derivatives.

can also be seen by writing EGt.10 in the form The inhomogeneous terms for Sec. Il are:

po=1+C()(v*+K?p5—1). ot (azum> 2_(auu) LT 223744 7,
o2l 9" T L o vopd Po 2p3

To the degree that(x) is not strongly dependent on we

see approximately how the®p3 term on the right hand side Z_%z
becomes important gs, increases. This restabilizing behav- 2po’
ior would be alleviated if one discussed the problem in terms
of fixed v and fixedx, so that both wavelengths would scale 2 2 2

: X ’ X 1/9'°U U Z7 22,Z z
with po. This was done by Coriell and Parkg8] whose — |g,=— _( 230) i_( Sl) P e
variablek, is the same as owt, and makes perfectly good 2\ dp ap Po Po 2pg

sense for a linear stability analysis. On the other hand, in an 72
initial value problem for a perturbation corresponding to 1z ,
given v andk, one would not be able to holdconstant ag, 2po
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1(dUo\_, [d°Uy 1 U, U,
(?p3

lus=—= |2t 5 21y 21y ——
U2 2 1 (9p2 1 pg 1¢ (9(]5 1z 9z

p2 Mol L e 122
2 p |2 Cret il

and

Z3 Uy, Uy o U U,
|L3:_€—ap3 —2172, &pz Z; ap &2 ap
2
R4 azuu_ 22,2, 22,7544 2257144
2 ®  pg Po Po
3 2 2
Z1yZoy Z1Zo, L1 3Z1Zigy 2125
—— 3 t——*t—=3+ T 2
Po Po Po Po 2py
ZiysZ2, Z1,2%, 32,23, 32,72
_ 1o 1z lzzzl¢ + 1-1¢ 1zzzlz
2p} 2p5 2p5 2

2 3 _,
- ;g VARYATIAY v Z_pé VAPVAYYS

| Z3 $Puqg, . #Ug Vs g
S &p?’ 142 &pz 1 ap 2 ap
2
4 d°U st 2Z1Z; 27247544 2252144
2 w*  pp Po Po
3 2 2
Zl¢zz¢ Zy,Z,, Z3 3lel¢¢ Z,75,
—— 3 tT——t2t—7 52
Po Po  Po Po 2pp
 ZigeZi; Zudly  3LiZiy 3Zudi,
205 2p5 2p5 2

3
-~ Z14Z1,Z1 45— 20 252144

A U, 123a4U0 7 9°U, 1ZZ U,
us— 1 Zﬂ*’_ﬁp 6“1 ﬁp4 2 0-,p2 241 &p§
PU, Z, 8°U, d°U,

RS Tarev ki AV S wr i i AVA Sy
ap Po dpdd dpdz
Z, Uy [ 1 } 27, U,
‘= = | 5 23,4+ 28, - —F Zyy —

2 ap* [pg M T g T 0

1 U, U, 1 U, oU,

t 521yt 2yt 52— +2Zy ——
p(z) 1¢ 07¢ 1z 9z Pg 2z c7q5 2z 9z

10U, [1 Z, U,
+-—|523 +zz}— — 73
2 &p |:;g l¢ 1z Eg ap l¢

dUg
ap

1
— Z1pZoyT leZZZ}-
Po
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APPENDIX B

Terms corresponding to Sec. IV B:

9= —pi(Lp—aio/po)l. 7y,

poa’Lo+ V2+X2_ 1
pa[K,(X)—C,l,(x)]’

1)_
=

0 2
a(51):P1/Po=

2 2_
o #1
pOI V(X)

g =~

0

V(o)_p a0 a(Ll)
—P17 2 T

N Po  Po

(1)
Xa
1) _ L1
Vg =

ry {KL() = C L0} + Bas)x1L(x)] pg
2
+aio/po,
where

o _1TPo
Lo po-2\’

K, (xe™)

Txe )

X= kpo .

The terms corresponding to Sec. IV C: We write the in-

homogeneous terms in Eq8.17—(3.19 as

=1+ p,1®cogkz)coqd vep) + 1 cog 2kz)cog 2v )
+1®)cog2kz)+1E cog2v¢),

where

o X ' !
(=05 ki -C.

+—13(—x2+5v2—2),
8pp

©_%0_ X i1t
= a7[K,(X)—C,l,(x
L2 spg 4p0 Ll[ v( ) ( )]
+ = (—x?+31%2-2),
8p3( =2
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o X , ,
I(LE2):8_p(2)_ pg aJ[KL(X)—C,I(x)]

+ (x*+51%2-2),
8p3

1 1
ls ——4—p0aS)X| (X)+7(X + 3772 -2),

1 1
|<S§>=—E a§x1(x)+ = 5.3 (— x?+51%-2),
0

Po

1
— (—Xx%>+312-2),
8p5

1 1
18 =— — a1 (x)+ —= (X2+512—2),
S2 4P0 S1 V( ) 8p8( )

2
1(B=2L2 (2-x —v2>+iz{a<“n<”(x> C,I%(%)]

8po

1
— Ba§)I(x >}—4—0<x + 1) {aJ[K,(X)—C,1,(%)]
— Bag, ()},

2
|<U‘32>—8 3(2+x2+v2)+4p0{aL DIK”(x)—C,1"(x)]

_Ba(1)|"(x)}+ % (x>+ VZ){a(l)[K,,(X) —-C,1,(x)]

—Bal ()},

(D)_ .2 X2 "
Yy 8—§(2+X 4 )+—2'{C¥L1[K (x)—C,I"(x)]

—Ba ()} — % (—x2+v?)

X{a(Lll)[KV(X) - Cvl V(X)] - Ba’Sl I V(X)}’

2
a0 X
1B =—= (2-x2+1?)+ — {aJ[K1(x)— C,I"(x)]
V2" 8p; 493{

( X%+ 1?)

—Bay’ I"(x)}+

X{aiﬁ)[KV(x)—cvl L)]=Bagl ()}
For the second order solution:

|(A)
0)_ _

poaLo—1
A= A P2 —=>

2
PO

(1) I
Ao =P1y N K (X)
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[(C)
a(z): L2
L2 KZV(ZX)_CZVIZV(ZX) ,

|(D)
3=
Ko(2x) = Col o(2x)
|(E)
(4) _ L2
A2 T A _ g 2v Ay

1
_ (A)
=p, 5+,
Po 2

|(B)
1
a(SZ) P1 [ (X)
v

(2) —
a - 1
2 1p,(2x)

|(D)
(3)_

sz lo(2x)’
1S

(4) _

Asp =2y
Pov

where 1,(x),1,,(2x),l5(2x),Kq(2x),K,(X),K5,(2X) are
modified Bessel functions and

_ KZv(kaoc)
2 15,(2kps)

The terms corresponding to Sec. IV: The third order in-

homogeneous terms in Eq8.17—(3.19 can be written as

| =1®cogk2)cogvep)+--- ,
where
(B) Lo 1) 2 21/2
h _Pz__aLl_[K (X)=C,l,(x)]- 3 +—=
Po Po 0
_ Po%Lo™ 1 p*
pogfé L3
xI'(x) 2 212
18 =p,| —ad) ——— =+ —|+1%,
3 = P2 SRS pg pg S3
2
aLO X n n n
153=pa| 2—5 + = {alY[KL(0)—C,1(x)]— Bagl(x)}
o Po
1 1 | *
_W(Poam_ )| +103,
with
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o 3o 12 X o Ko@) =Cal (@) X ) Kg(2X) = Col é(zx)Jr v |<E> e’ e 2
=—Tz"3 PR Ny TN
L3 16 Pg Po-"x 2P0 L2 K5,(2x) = Cy,l5,(2x) Po L2 Ko(2x) = Col o(2x) L2 g?h—e
9 x2 K0 = C"(00 ]+ e O A 45 9 (V“ x4)
— o5« X (X —4— 55 4t 55| 2t 2],
32p3 "M 1605 1603 325 32\ 8 p
o X o) 124(2%) 002 g v 9% a®17(x)+ 9 _4_5”_2+ﬁ+3(x_4 ”_4)
ST 2p0 s 15,(2X) po 2 1o(2x) 2 p, 32p2 asil, 16p8 32p8  16ps 32\ pd " p3)
* 18 aLO 9 X " "m (L)ym I(A) X2 (2) II "
|U3:_3_2 S 32 3{CVL1[K (X)=C I (x)]=Ba 1) ()} + 2 /)\4' — {1 5[K5,(2x) —Cy,15,(2X)]

2x? v )
—Bag15,(2)}+ —5 {1 3[K5(20) — Col §(20) ]~ BaG15(20)} + — {a{3[(2v+1)e* h—(2v—1)e 2" "]
Po Po

—3(2V—1)ag§>p§V}+ { aJ[K(x)—C, (x)]+,8a(1)lv(x)}(v2+x2)+ ? (1P+x?)

3.2p4
2 2 2

+3—3a<1> K, (X)—C,1,(x)]— Bay; Iv<x>}+pz< a3 (e h—e 2" M) + Badp} )+’;S

1
X{ = ai3[Ko(2X) ~ Colo(20) ]+ BaG1o(20} + 57 (123 {~alF[Kz,(2X) = Coul2(20) 1+ BaG12,(200}
0
N 312
16p6 aio’
The third order constants are
|(B)
o= AR
LK, ()= C, (%)

p2(X,B,V)=./f)’/£%,

where
]j):_xl’,h K (x)—C,l.(x) L a1 il;(_x)_w
KV(X)_CVI I/(X) = Po IV(X) us:
X [K/(x)—C,l(x ))(a,_o xay 2 217 agpo—1 x 1/(x)
Y=— o= K!(x)—C,l(x +———|-8—
’ ( K,(00—C,1,(0) SR =G00I~ 5+ = == =B
2 2V2 201,_0 X2 pOaLO—l
X[ —— a@l(x)— — —)+( aJ[K"(x) = C,1"(x)]— Ba ()} — —5——
po PP 06 pg{ shi= =
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