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We develop a weakly nonlinear morphological stability analysis for an infinitely long right circular cylinder
growing from its pure undercooled melt. For a cylinder perturbed by a specific planform consisting of sinu-
soids, we perform an expansion in the planform amplitudeA to calculate the nonlinear critical radius~above
which the chosen planform will be unstable for finiteA!, to the lowest order inA, by setting the normal
velocity corresponding to the fundamental perturbing mode to zero. We study the nonlinear critical radius as a
function of the amplitude to identify the various bifurcations, which for the chosen sinusoidal planforms are
subcritical or supercritical~requiring an expansion to third order inA!, since the shapes for positive and
negative amplitudes are related by rotation and translation. We find that the bifurcations are mostly subcritical.
For the special case of axially symmetric perturbations, we encounter a generalization of the Rayleigh vari-
cosity instability.@S1063-651X~96!01706-4#

PACS number~s!: 64.70.Dv, 81.10.Aj, 02.30.Mv

I. INTRODUCTION

We consider the free growth of a segment of an infinitely
long right circular cylinder from its pure undercooled melt,
subject to the quasistationary approximation. The process of
crystallization from the melt is a first order phase transfor-
mation involving the release of latent heat which has to be
conducted away both into the solid and the liquid as the
process continues. For simplicity we assume isotropy of all
crystalline properties including surface tension. The basic
physics and the mathematical description of the problem is
very similar to that for a spherical crystal, discussed in@1#.
The details of the calculation will, however, be quite differ-
ent since the cylinder, unlike the sphere, is not a shape of
minimum area for a fixed volume. Indeed infinitesimal per-
turbations can lead to principle curvatures of opposite signs,
resulting in an instability that is closely related to the Ray-
leigh varicosity instability.

II. THE UNDERLYING PHYSICS AND THE MODEL

We consider an infinite right circular cylinder growing by
means of diffusive heat transfer~convection proscribed!
from its pure undercooled melt. In the quasistationary ap-
proximation @2,3#, the nondimensional governing equation
and boundary conditions for thermal diffusion in the solid
phase and the liquid phase may be written in the form

¹2UL50, ~2.1!

¹2US50, ~2.2!

in the bulk solid and liquid, respectively. At the solid-liquid
interface,

VN5“U•n̂, ~2.3!

UL5US512K, ~2.4!

whereU52UL1bUS , b is the ratio of thermal conductiv-
ity in the solid to that in the liquid phase and

UI→0 as r→`. ~2.5!

The choice of dimensionless variables is similar to that of
previous work@4,5# where lengths are scaled by the nucle-
ation radius, R*5(TMg)/[L0(TM2T`)], and time by
t5[(R* )2]/(aLS) whereg is the surface tension,TM is the
melting temperature,T` is the far field temperature,L0 is the
latent heat, andaL is the thermal diffusivity in the liquid
phase. Note thatR* pertains to a cylindrical nucleus and is
therefore a factor of two smaller than that for a sphere. The
dimensionless curvatureK5R* (1/R111/R2) whereR1 and
R2 are the dimensional principal radii of curvature. The di-
mensionless undercoolingS5rLCL(TM2T`)/L0 and we
also use the dimensionless temperature fields
US,L5(TS,L2T`)/(TM2T`), whererL andCL are the den-
sity and specific heat of the liquid phase, respectively, and
TS,L are the respective temperature fields in the solid and
liquid.

III. PERTURBATION EXPANSION

We follow a procedure similar to that of@1# except in
cylindrical coordinates~r,f,z!; we reproduce here only a
brief outline to introduce our notation. At a particular instant
of time, we study an interface of the form

r5g~z,f![r̄1A cos~kz!cos~nf!, ~3.1!

with n being an integer, and to third order

r̄5r01er11e2r21e3r3 , ~3.2!
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A5eA11e2A21e3A3 . ~3.3!

If we define

Zi~z,f!5r i1Aicos~nf!cos~kz! for i51,2,3, ~3.4!

then

g~z,f!5r01eZ1~z,f!1e2Z2~f,z!1e3Z3~f,z!.
~3.5!

Similarly we expand the temperature fields~which depend
on r, f, z!

UL5UL01eUL11e2UL21e3UL3 , ~3.6!

US5US01eUS11e2US21e3US3 , ~3.7!

the curvature,

K5K01eK11e2K21e3K3 ~3.8!

and the normal growth speed

VN5VN01eVN11e2VN21e3VN3 . ~3.9!

An explicit expression for theKi in the curvature expansion
is given in Appendix A. The differential equations and the
interfacial boundary condition at each order ofe then appear
as follows.

Order e0. The differential equations are

1

r

]

]r S r
]UL0

]r D50, ~3.10!

1

r

]

]r S r
]US0

]r D50, ~3.11!

and the interface boundary conditions are

UL0512
1

r0
, ~3.12!

US0512
1

r0
, ~3.13!

VN05
]U0

]r
. ~3.14!

Order en, n51,2,3. The differential equations are

¹2ULn50, ~3.15!

¹2USn50, ~3.16!

and the interface boundary conditions are

ULn1Zn
dUL0

dr
2
Zn
r0
22

Znff

r0
2 2Znzz5I Ln, ~3.17!

USn1Zn
dUS0

dr
2
Zn
r0
22

Znff

r0
2 2Znzz5I Sn, ~3.18!

2VNn1
]Un

]r
1Zn

]2U0

]r2
5I Un , ~3.19!

where theI ’s on the right hand sides denote inhomogeneous
terms that are zero forn51 but otherwise complicated func-
tions of the solutions at a lower order. The relevant inhomo-
geneous terms are given in Appendix A. As discussed in@1#,
we can setA151 andA25A350 in Eq. ~3.3!, without any
loss of generality. This amounts to renormalization and iden-
tification of e5A.

IV. PERTURBATION ALONG THE z AND f DIRECTIONS

We consider a perturbation of the form

Zi~f,z!5r i1e cos~kz!cos~nf!. ~4.1!

A. Zero order solution

We solve Eqs.~3.10! and ~3.11! subject to the boundary
conditions, Eqs.~3.12!–~3.14!, to get

US05
r021

r0
, ~4.2!

UL0~r!5
12r0

r0ln~r` /r0!
ln~r/r`!, ~4.3!

VN05
r021

r0
2ln~r` /r0!

. ~4.4!

In cylindrical coordinates we need a finite cutoffr` for the
solution to remain finite. Following Coriell and Parker@6#
we writer`5r0/~gl!, where lng250.5572~Euler’s constant!
and for supercoolingS!1, l is a solution of the equation

l2ln~g2l2!1S50.

With this choice ofr` , the growth rate given by Eq.~4.4! is
the same, to lowest order inS, as the growth rate calculated
by using the fully time-dependent diffusion equation. For
later use, we introduce the notation

Al5 ln~r` /r0!5S/~2l2!.

B. First order solution

The trial solutions to Eqs.~3.15! and~3.16!, subject to the
boundary conditions, Eqs.~3.17!–~3.19!, can be written in
the form

UL1~r,z,f!5aL1
~0!ln~r/r`!1aL1

~1!@Kn~kr!2CnI n~kr!#

3cos~kz!cos~nf!, ~4.5!

US1~r,z,f!5aS1
~0!1aS1

~1!I n~kr!cos~kz!cos~nf!,
~4.6!

VN1~z,f!5VN1
~0!1VN1

~1!cos~kz!cos~nf!, ~4.7!

Z1~z,f!5r11cos~kz!cos~nf!, ~4.8!
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where Kn and I n are the modified Bessel functions. The
quantities,Cn , a L1

(0), a L1
(1), aS1

(0), aS1
(1), VN1

(0), VN1
(1), and r1,

obtained by substituting the trial solutions into Eqs.~3.17!–
~3.19!, are given in Appendix B. We reproduce the expres-
sion forVN1

(1) for later reference

VN1
~1!5

1

r0
3
Al

$~r021!@J n~x!21#

2Al~n21x221!@J n~x!1bHn~x!#%, ~4.9!

where

J n~x!5x
2Kn8~x!1CnI n8~x!

Kn~x!2CnI n~x!
,

Hn~x!5x
I n8~x!

I n~x!
,

Cn5
Kn~xeAl!

I n~xeAl!
,

x5kr0 .

At the onset of instability, the normal velocity corre-
sponding to the perturbing mode must vanish to all orders.
For the first order, this amounts to setting

VN1
~1!50

in Eq. ~4.9!. For J n(x)Þ1 this gives the critical radius for
instability in terms ofk, n, andb. It is easier to first express
r0 in terms ofx, n, andb as

r0~x,n,b!511AlF ~n21x221!@J n~x!1bHn~x!#

J n~x!21 G
~4.10!

and later to dividex by r0 to obtain the corresponding value
of k. The critical radius as a function ofk for variousn is
shown in Fig. 1.

To see how a certain perturbing mode grows, we imagine
a linek5const in either of the plots in Fig. 1. If the constant
is zero, the vertical line cuts each curve at a single point,
implying that the system starts out stable and then goes un-
stable with respect to a given mode asr increases past the
corresponding critical value. For any other value of the con-
stant, up to some maximum corresponding to the knee of the
curve, the vertical line can intersect each curve at two points,
which means that the system is linearly stable forr less than
that given by the lower branch of the curve, goes unstable
above it but stabilizes again forr greater than the upper
branch of the curve. Thus the region enclosed by each curve
and ther0 axis constitutes an unstable zone, while the rest of
the plane is a stable zone for the corresponding perturbing
mode. We postpone the discussion of the casen50 ~which
corresponds to a perturbation in thez direction only! to the
next subsection because it has some unique features.

Another case that needs special mention is perturbation
with k50 andn51. This corresponds to a perturbation by
cosf along thef direction and no perturbation along the
axis of the cylinder. In that limit

H1~0!51,

J 1~0!5
r`
21r0

2

r`
22r0

2 .

If J 1→1, the denominator of Eq.~4.10! tends to zero and
Eq. ~4.9! becomes

VN1
~1!5

1

r0
3
Al

2r0
2~r021!

r`
22r0

2 . ~4.11!

For r`@r0, we see thatVN1
(1)→0, so this mode is nearly

neutrally stable. This arises because perturbation by cosf
represents a translation to first order ine; however, the finite
cutoff r` used to avoid the singularity at infinity to solutions
of the Laplace equation, spoils this precise symmetry. The
corresponding case for the sphere was treated in@1# in which
case no finite cutoff was necessary.

Perturbation in the z direction only

The results for az perturbation alone~axial symmetry!
can be obtained by settingn50 in the general expressions.
Equation~4.10! yields

r0~x,b!511AlF ~x221!@J 0~x!1bH0~x!#

J 0~x!21 G .
~4.12!

A plot of r0 as a function ofk ~thez-direction wave number!
is shown in Fig. 2. The broken line represents the hyperbola
kr051. The normal velocity as a function of the radiusr0 for
two different values ofk is shown in Fig. 3. To understand

FIG. 1. The critical radius as a function of thez-direction wave
numberk for variousn. The thermal conductivity ratiob is 0.0 for
the left plot and 1.5 for the right. The supersaturation is such that
Al54.0. For each of the plots,n51,3,4,5 from bottom to top. As
we approach a given critical curve from below, the system is lin-
early stable for any radius less than that given by the lower branch
of the curve, goes unstable above it, but restabilizes as we cross the
upper branch of the curve.
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how a perturbation grows, we imagine a vertical linek50.02
in Fig. 2 in conjunction with the first plot in Fig. 3. For small
r0, the normal velocity is positive, so the system is unstable.
As r0 increases past the lower branch of the curve, the nor-
mal velocity changes sign and the system becomes stable.
However, further increase ofr0 beyond the upper branch of
the curve renders the system unstable again. Fork50.2, on
the other hand, we see that the system is unstable at first, but
then becomes stable asr0 crosses the critical value. There-
fore the curves in Fig. 2 divide the plane into a stable~ex-
treme left!, an unstable~middle!, and a stable~right! region,
respectively. From considerations of surface free energy
alone, the regionkr0,1 bounded by the dotted line, would
have been unstable while the region to the right would have
been stable. This is the well known Rayleigh varicosity in-
stability, and is a result of the fact that sinusoidal perturba-
tions of wavelengths greater than 2pr0 lower the surface to
volume ratio of a cylinder. Thus the class of perturbations
with n50 has a long wavelength instability not seen in the

general case whennÞ0. Similar conclusions were discussed
by Coriell and Parker@6# in terms of the variablesr0, x, in
which case the Rayleigh varicosity instability would corre-
spond to a vertical linex51. McFadden, Coriell, and Murray
@7# considered the related case of a cylinder that is not grow-
ing, made possible by imposing a fixed temperature at an
inner cutoff radius as well as an outer cutoff radius. They
found that a positive temperature gradient in the liquid tends
to oppose or even suppress the Rayleigh instability, whereas
our negative temperature gradient in the liquid, needed for
the unperturbed cylinder to grow, enhances the Rayleigh in-
stability.

C. Second order solution

The inhomogeneous terms in Eqs.~3.17!–~3.19! can be
expressed formally as

I5I ~A!1r1I
~B!cos~kz!cos~nf!1I ~C!cos~2kz!cos~2nf!

1I ~D !cos~2kz!1I ~E!cos~2nf!,

where all the coefficients are known and appear in Appendix
B. This suggests the following form for the second order trial
solutions:

UL2~r,z,f!5aL2
~0!ln~r/r`!1aL2

~1!Kn~kr!cos~kz!cos~nf!

1aL2
~2!@K2n~2kr!2C2nI 2n~2kr!#cos~2kz!

3cos~2nf!1aL2
~3!

3@K0~2kr!2C0I 0~2kr!#cos~2kz!1aL2
~4!

3F S r`

r D 2n

2S r

r`
D 2nGcos~2nf!, ~4.13!

US2~r,z,f!5aS2
~0!1aS2

~1!I n~kr!cos~kz!cos~nf!

1aS2
~2!I 2n~2kr!cos~2kz!cos~2nf!

1aS2
~3!I 0~2kr!cos~2kz!1aS2

~4!r2ncos~2nf!,

~4.14!

VN2~z,f!5VN2
~0!1VN2

~1!cos~kz!cos~nf!

1VN2
~2!cos~2kz!cos~2nf!1VN3

~3!cos~2kz!

1VN2
~4!cos~2nf!, ~4.15!

Z25r2 , ~4.16!

where

C2n5
K2n~2kr`!

I 2n~2kr`!
,

C05
K0~2kr`!

I 0~2kr`!
.

The quantitiesa L2
i ,a S2

i ,VN2
i for i50,1,2,3,4, found by sub-

stituting the trial solutions into the interface boundary con-

FIG. 2. Critical radius as a function of the wave numberk for
the perturbation in thez direction only~n50!. The unstable region
has been hatched. The long wavelength instability due to the Ray-
leigh condition, represented by the regionkr0,1 ~the broken line
representskr051! is a characteristic of this class of perturbations.

FIG. 3. The normal velocity component proportional to the per-
turbing mode at first order. The left plot is fork50.02 and the right
plot is for k50.2.

53 6247WEAKLY NONLINEAR MORPHOLOGICAL INSTABILITY OF A . . .



ditions, Eqs.~3.17!–~3.19!, are given in Appendix B. The
marginal stability condition at second order requiresVN2

(1) to
vanish, providing us with

r1F I U2~B!1I L2
~B!

x

r0

Kn8~x!

Kn~x!
2I S2

~B!b
x

r0

I n8~x!

I n~x!
G50. ~4.17!

Since the terms within the square brackets in Eq.~4.17! can
be shown to be nonzero, we must have

r150, ~4.18!

forcing

aL2
~1!5aS2

~1!50.

This leavesr2 as the only free parameter, which will be
determined at the next order.

D. Third order solution

The third order inhomogeneous terms in Eqs.~3.17!–
~3.19! can be expressed as

I L35I L3
~B!cos~kz!cos~nf!1••• ,

I S35I S3
~B!cos~kz!cos~nf!1••• ,

I U35I U3
~B!cos~kz!cos~nf!1••• ,

where we show only the terms necessary to determiner2.
Therefore the trial solutions to Eqs.~3.15! and ~3.16! will
look like

UL3~r,z,f!5aL3
~1!@Kn~kr!2CnI n~kr!#cos~kz!cos~nf!

1••• , ~4.19!

US3~r,z,f!5aS3
~1!I n~kr!cos~kz!cos~nf!1••• ,

~4.20!

VN3~z,f!5VN3
~1!cos~kz!cos~nf!1••• , ~4.21!

Z35r3 . ~4.22!

These terms will suffice in finding an expression forr2,
which had remained undetermined at the end of the second
order. We substitute the trial solutions in the boundary con-
dition Eqs. ~3.17!–~3.19! to find the quantitiesa L3

(1), aS3
(1),

and VN3
(1), which appear in Appendix B. In particular, the

normal velocity coefficient proportional to the fundamental
perturbing mode is

VN3
~1!52I L3

~B!
x

r0

Kn8~x!2CnI n8~x!

Kn~x!2CnI n~x!
1I S3

~B!b
x

r0

I n8~x!

I n~x!
2I U3

~B! .

~4.23!

At the onset of instability we must have

VN3
~1!50

in Eq. ~4.23!, giving us an expression forr2 as a function of
x, b, n. The explicit expression appears in Appendix B and a

plot of r2 as a function ofk for various values ofn andb is
shown in Fig. 4. If we go back to Eq.~3.2! we have, since
r150,

r~x,n,b!5r0~x,n,b!1A2r2~x,n,b!. ~4.24!

The plot ofr as a function ofA will be a parabola and the
bifurcation will be subcritical ifr2 is negative and supercriti-
cal otherwise. Thus, in contrast to the case of the sphere@1#,
the bifurcations are never transcritical for these planforms on
a cylinder. This happens because, for the chosen planform,
the positive and the negative amplitude perturbations are re-
lated by rotation~for the f axis! and translation~for the z
axis! and do not constitute any distinct physical states. Con-
sequently the criticalr is independent of the sign of the
amplitudeA.

V. CONCLUSIONS

An expansion in the perturbation amplitudeA is per-
formed and the critical radius to the lowest order in A is
found by setting the normal velocity corresponding to the
fundamental perturbing mode to zero. Depending on the
symmetry of the perturbing mode we found the following
results.

~1! n50 and arbitraryk: The critical radius for this axi-
ally symmetric perturbation is given by Eq.~4.12!. Perturba-
tions of this form are subject to a long wavelength instability
related to the Rayleigh varicosity instability, which occurs
because sinusoidal perturbations with a wavelength greater
than the circumference of a cylinder can lower its surface to
the volume ratio.

~2! n51 andk50: This case corresponds to a perturba-
tion by cos~f! along thef direction and no perturbation
along the axis of the cylinder. To the first order in the per-

FIG. 4. r2 as a function of thez-direction wave numberk for
various n values. The thermal conductivity ratiob is 0.0 in the
lower plots and 1.5 in the upper plots. The supersaturation is such
thatAl54.0.n51,2,3 from left to right. For all plots the system is
linearly stable beyond the maximum value ofk as given by Fig. 1
for each of the curves. Positiver2 implies supercritical bifurcation
while negative values imply subcritical bifurcation.
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turbation amplitude, this amounts to a translation of the cyl-
inder without any shape change. If such a cylinder were in an
infinite medium, this perturbation would be neutrally stable.
For the case of a finite cutoff radius,@see Eq.~4.11!# the
normal growth speed of a perturbation tends to zero for
r`@r0.

~3! nÞ0 and arbitraryk: The critical radius for a pertur-
bation of finite amplitudeA is found by carrying the pertur-
bation expansion inA to the third order and is given by Eq.
~4.24!. The bifurcation is supercritical ifr2~x,n,b!.0, and
subcritical if r2~x,n,b!,0. In this case, the shapes generated
by the positive and negative amplitude are related by rotation
~in thef direction! and translation~in the z direction!. The
governing equations are therefore independent of the sign of
A.

In three dimensions, the nature of the bifurcations depend
on the symmetry of the planform under consideration. For
the perturbed sphere@1#, we found that such bifurcations
could be transcritical, subcritical, or supercritical depending
on the particular spherical harmonic under consideration.
Moreover, capillarity was always a stabilizing force. This
behavior for a sphere arose because an unperturbed sphere
has two positive and equal principal radii of curvature. Any
perturbations of such a body at a fixed volume tend to in-
crease its surface area, and all directions along the surface of
the unperturbed sphere are equivalent. For the unperturbed
circular cylinder, on the other hand, one principal radius of
curvature is positive and the other is infinite. Thus small
perturbations along thez direction can lead to regions of
negative curvature for sufficiently long wavelengths, the ori-
gin of the Rayleigh instability. Moreover, directions along
the surface of the perturbed cylinder are not equivalent and
perturbations of the formA cos~nf! andA cos(kz) display
symmetries of the formA→2A when, respectively,
n→n12p and z→z12p/k. Therefore there are no tran-
scritical bifurcations for the cylinder.

The origin of another feature of our analysis of the cylin-
der, namely, the upper branches in Fig. 1 that correspond to
restabilization, is worth mentioning. These branches arise be-
cause we chose to discuss the problem at fixedn and fixedk.
By fixing n, one fixes the number of nodes in thef direction,
so the wavelengths associated withf perturbations arer0/n,
i.e., they scale withr0. But the wavelengths associated with
thez perturbations are 2p/k, independent ofr0. Therefore, as
r0 increases and the gradient effect that gives rise to insta-
bility is weakened, the capillary stabilization due toz pertur-
bations with afixed wavelength becomes stabilizing. This
can also be seen by writing Eq.~4.10! in the form

r0511C~x!~n21k2r0
221!.

To the degree thatC(x) is not strongly dependent onx, we
see approximately how thek2r0

2 term on the right hand side
becomes important asr0 increases. This restabilizing behav-
ior would be alleviated if one discussed the problem in terms
of fixed n and fixedx, so that both wavelengths would scale
with r0. This was done by Coriell and Parker@6# whose
variablekz is the same as ourx, and makes perfectly good
sense for a linear stability analysis. On the other hand, in an
initial value problem for a perturbation corresponding to
givenn andk, one would not be able to holdx constant asr0

increases, which makesx an inconvenient parameter for a
nonlinear analysis. As mentioned in our previous paper in
connection with the sphere, these weakly nonlinear results
constitute a nontrivial test for the development of numerical
algorithms for three dimensional problems. It would also be
interesting to explore the effect of anisotropies in surface
free energy, especially those that would couple with then
perturbations in a manner that might shed light on the crys-
tallographically directed sidebranches of dendrites.
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APPENDIX A

The expression for the curvature expansion terms in Eq.
~3.8! are as follows:

K05
1

r0
,

K152
Z1
r0
22

Z1ff

r0
2 2Z1zz,

K252
Z2
r0
22

Z2ff

r0
2 2Z2zz1

Z1
2

r0
3 1

2Z1Z1ff

r0
3 1

Z1f
2

2r0
32

Z1z
2

2r0
,

K352
Z3
r0
22

Z3ff

r0
2 2Z3zz1

2Z1Z2
r0
3 1

2Z1Z2ff

r0
3 1

2Z2Z1ff

r0
3

1
Z1fZ2f

r0
3 2

Z1zZ2z
r0

2
Z1
3

r0
423

Z1
2Z1ff

r0
4 1

Z1Z1z
2

2r0
2

1
Z1ffZ1z

2

2r0
2 1

Z1zzZ1f
2

2r0
2 2

3

2

Z1Z1f
2

r0
4 1

3

2
Z1zzZ1z

2

12
Z1fZ1zZ1fz

r0
2 1

3

2

Z1f
2 Z1ff

r0
4 .

In the above expressions and subsequent text, the subscripts
f andz denote the respective partial derivatives.

The inhomogeneous terms for Sec. III are:

I L252
1

2 S ]2UL0

]r2 DZ122S ]UL1

]r DZ12 Z1
2

r0
32

2Z1Z1ff

r0
3 2

Z1f
2

2r0
3

1
Z1z
2

2r0
,

I S252
1

2 S ]! 2US0

]r2 DZ122S ]US1

]r DZ12 Z1
2

r0
32

2Z1Z1ff

r0
3 2

Z1f
2

2r0
3

1
Z1z
2

2r0
,
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I U252
1

2 S ]3U0

]r3 DZ122S ]2U1
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APPENDIX B

Terms corresponding to Sec. IV B:

aL1
~0!52r1~1/r0

22aL0 /r0!/Al ,

aL1
~1!52

r0aL01n21x221

r0
2@Kn~x!2CnI n~x!#

,

aS1
~0!5r1 /r0

2,

aS1
~1!52

n21x221

r0
2I n~x!

,

VN1
~0!5r1

aL0

r0
2 2

aL1
~0!

r0
,

VN1
~1!52

xaL1
~1!

r0
$Kn8~x!2CnI n8~x!%1baS1

~1!xIn8~x!/r0

1aL0 /r0
2,

where

aL05
12r0
r0Al

,

Cn5
Kn~xeAl!

I n~xeAl!
,

x5kr0 .
The terms corresponding to Sec. IV C: We write the in-

homogeneous terms in Eqs.~3.17!–~3.19! as

I5I ~A!1r1I
~B!cos~kz!cos~nf!1I ~C!cos~2kz!cos~2nf!

1I ~D !cos~2kz!1I ~E!cos~2nf!,

where

I L2
~A!5

aL0

8r0
22

x

4r0
aL1

~1!@Kn8~x!2CnI n8~x!#

1
1

8r0
3 ~x213n222!,

I L2
~C!5

aL0

8r0
22

x

4r0
aL1

~1!@Kn8~x!2CnI n8~x!#

1
1

8r0
3 ~2x215n222!,

I L2
~D !5

aL0

8r0
22

x

4r0
aL1

~1!@Kn8~x!2CnI n8~x!#

1
1

8r0
3 ~2x213n222!,
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4r0
2 $aL1

~1!@Kn9~x!2CnI n9~x!#

2baS1
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1

4r0
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3$aL1
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For the second order solution:

aL2
~0!52

I L2
~A!

Al
1r2

r0aL021

r0
2
Al

,

aL2
~1!5r1

I L2
~B!

Kn~x!
,

aL2
~2!5

I L2
~C!

K2n~2x!2C2nI 2n~2x!
,

aL2
~3!5

I L2
~D !
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,
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I L2
~E!
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r0
2 1I S2

~A! ,
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I 2n~2x!
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aS2
~3!5

I S2
~D !

I 0~2x!
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aS2
~4!5

I S2
~E!

r0
2n ,

where I n(x),I 2n(2x),I 0(2x),K0(2x),Kn(x),K2n(2x) are
modified Bessel functions and

C2n5
K2n~2kr`!

I 2n~2kr`!
.

The terms corresponding to Sec. IV: The third order in-
homogeneous terms in Eqs.~3.17!–~3.19! can be written as

I5I ~B!cos~k2!cos~nf!1••• ,

where

I L3
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4 ~r0aL021!G1I U3* ,

with
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The third order constants are
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~1!5

I L3
~B!

Kn~x!2CnI n~x!
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D .
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